
PUBLIC
3/2/2022

Controlling the Source:

Abusing Source Code Management

Systems

Brett Hawkins

Adversary Simulation, IBM X-Force Red

X-Force Red | 3/2/2022 2

Document Tracking

Data Classification: PUBLIC

Version Date Author Notes

1.0 3/2/2022 Brett Hawkins Release

X-Force Red | 3/2/2022 3

TABLE OF CONTENTS

ABSTRACT... 5

BACKGROUND .. 6

SOURCE CONTROL VS. VERSION CONTROL ... 6

SOURCE CONTROL VS. SOURCE CODE MANAGEMENT .. 6

SOURCE CODE MANAGEMENT SYSTEMS ... 6

POPULAR SCM SYSTEMS ... 7

SCM SYSTEMS AND THE DEVOPS PIPELINE ... 7

SOFTWARE SUPPLY CHAIN ATTACKS ... 8

LATERAL MOVEMENT TO OTHER DEVOPS SYSTEMS ... 9

GITHUB ENTERPRISE ..20

BACKGROUND ..20

ATTACK SCENARIOS ..22

GITLAB ENTERPRISE ...49

BACKGROUND ..49

ATTACK SCENARIOS ..51

BITBUCKET ...74

BACKGROUND ..74

ATTACK SCENARIOS ..78

SCMKIT..94

BACKGROUND ..94

RECONNAISSANCE ..94

PRIVILEGE ESCALATION ..97

PERSISTENCE ...98

X-Force Red | 3/2/2022 4

DEFENSIVE CONSIDERATIONS.. 102

SCMKIT ... 102

GITHUB ENTERPRISE ... 103

GITLAB ENTERPRISE .. 105

BITBUCKET ... 107

CONCLUSION ... 109

ACKNOWLEDGMENTS ... 110

APPENDIX A: TABLE OF SCM ATTACK SCENARIOS.. 111

X-Force Red | 3/2/2022 5

Abstract

Source Code Management (SCM) systems play a vital role within organizations and have

been an afterthought in terms of defenses compared to other critical enterprise

systems such as Active Directory. SCM systems are used in the majority of organizations

to manage source code and integrate with other systems within the enterprise as part

of the DevOps pipeline, such as CI/CD systems like Jenkins. These SCM systems

provide attackers with opportunities for software supply chain attacks and can

facilitate lateral movement and privilege escalation throughout an organization.

This whitepaper will review a background on SCM systems, along with detailing ways

to abuse some of the most popular SCM systems such as GitHub Enterprise, GitLab

Enterprise and Bitbucket to perform various attack scenarios. These attack scenarios

include reconnaissance, manipulation of user roles, repository takeover, pivoting to

other DevOps systems, user impersonation and maintaining persistent access. X-Force

Red’s source code management attack toolkit (SCMKit) will also be shown to perform

and facilitate these attacks. Additionally, defensive guidance for protecting these SCM

systems will be outlined.

X-Force Red | 3/2/2022 6

Background

There are many ways to interact with and track source code, along with compiled

source code assets. Some of the common terms used in this process are source control,

version control and source code management.

SOURCE CONTROL VS. VERSION CONTROL

The terms “source control” and “version control” are often used interchangeably with

each other. However, there are differences between these two terms. Source control is

specifically for tracking changes in source code, whereas version control also includes

tracking changes for binary files and other file types. An example of this would be

version control tracking changes to compiled executables, whereas source control

would be tracking the changes to the underlying C# or C++ source files that were

compiled into that executable. Git is a popular source control tool, and Subversion is a

popular version control tool.

SOURCE CONTROL VS. SOURCE CODE MANAGEMENT

As previously mentioned, source control is in relation to tracking changes in source

code. To use source control in a practical manner as part of the development process,

source code management (SCM) systems are used. These systems allow tracking

changes to source code repositories and allow developers to resolve conflicts when

merging code commits from multiple people concurrently.

Source Code Management Systems

SCM systems provide a way for multiple team members to work on the same source

code files simultaneously, along with keeping track of file history changes and resolving

conflicts within source code files. There will typically be some type of user interface for

users to interact with. Some of these SCM systems are more popular than others and

have been adopted by enterprises, as they integrate into the development process in a

more reliable manner. These SCM systems can be abused to facilitate software supply

chain attacks1 and lateral movement within an organization.

1 https://www.cisa.gov/publication/software-supply-chain-attacks

X-Force Red | 3/2/2022 7

POPULAR SCM SYSTEMS

A few of the more popular SCM systems that are used within enterprises are GitHub

Enterprise2, GitLab Enterprise3 and Bitbucket4. These systems have different hosting

options, as they can be hosted on-premise or in the cloud. They support Git source

control and have multiple tiering models in terms of purchasing and setup. Additionally,

these SCM systems support integration with other systems to help facilitate a DevOps

pipeline5.

SCM SYSTEMS AND THE DEVOPS PIPELINE

SCM systems are heavily used during the “build” phase of a project in the DevOps

pipeline as shown in the below diagram. All other phases depend on the source code

that is developed and maintained within the SCM system.

DevOps Pipeline Diagram6

2 https://github.com/enterprise
3 https://about.gitlab.com/enterprise/
4 https://bitbucket.org/product/
5 https://www.redhat.com/architect/devops-cicd
6 https://medium.com/aws-cyber-range/secdevops-101-strengthen-the-basics-20f57197aa1c

X-Force Red | 3/2/2022 8

Once a source code project is ready to be compiled and built, it will get pushed to a

Continuous Integration (CI) server. After that, it will be tested, scanned, and deployed

for use in production.

DevOps Diagram7

SOFTWARE SUPPLY CHAIN ATTACKS

An attack that has been gaining popularity recently is software supply chain attacks8.

In this attack, an attacker injects itself into the development process at one of the

phases to deploy malicious code into production. This is typically performed in the

“build” phase. For organizations that provide software to other organizations, this can

enable the compromise of multiple organizations. One of the most notable software

supply chain attacks was the SolarWinds breach9, which impacted many organizations

in the private and public sector. The below diagram shows the opportunities an attacker

has during the development process to implement a software supply chain attack. The

research in this whitepaper focuses on the highlighted areas of “B” and “C”, as it relates

to the compromise of SCM systems. However, the compromise of these SCM systems

can also lead to other scenarios such as “D” where an attacker can use an SCM system

to compromise a build platform system.

7 https://devops.com/the-basics-devsecops-adoption
8 https://www.crowdstrike.com/cybersecurity-101/cyberattacks/supply-chain-attacks/
9 https://www.mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-
sunburst-backdoor

X-Force Red | 3/2/2022 9

Software Supply Chain Attack Opportunity Diagram10

LATERAL MOVEMENT TO OTHER DEVOPS SYSTEMS

SCM systems can be used as an initial access point to other DevOps systems that are

used in different phases of the DevOps lifecycle. Being able to pivot to the build system

to compromise the CI/CD platform or pivoting to the package repository system to

compromise the distribution platform are other scenarios where an attacker could

perform a software supply chain attack.

SCM Platform to CI/CD Platform

One scenario where an attacker could laterally move from an SCM platform is to target

the CI/CD platform. In this example, we will look at a scenario of performing lateral

movement from the Bitbucket SCM system to the Jenkins build system11.

When using Jenkins, you can provide a Jenkinsfile12, which is used as a configuration

file of a Jenkins pipeline13. This file can be checked into an SCM system, and is what

Jenkins uses to perform various actions as part of the build process. An attacker who

has gained access to an SCM system will first need to discover any repositories that

contain any files named “Jenkinsfile”. In this scenario, an attacker would need write

access to the discovered repositories to modify the Jenkinsfile. In Bitbucket, this can

be performed via the web interface or REST API.

10 https://opensource.googleblog.com/2021/10/protect-your-open-source-project-from-supply-chain-attacks.html
11 https://www.jenkins.io/
12 https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
13 https://www.jenkins.io/doc/book/pipeline/

X-Force Red | 3/2/2022 10

Searching for Jenkins pipeline configuration file

An attacker could simply modify the file to perform some malicious action, or they could

be more targeted and perform reconnaissance in Jenkins to discover which Jenkins job

is using these discovered files from Bitbucket. In the following example, an attacker

has identified the Jenkins job using the “Cred-Decryption” Bitbucket repository as

shown below.

X-Force Red | 3/2/2022 11

Jenkins job Git build data

To successfully authenticate to the Jenkins system via SSH, an attacker could add an

SSH key under their control to the SSH directory for the Jenkins user account. An

example of the Jenkinsfile modification in Bitbucket is shown below.

X-Force Red | 3/2/2022 12

Snippet of code added

Alternatively, an attacker could also wait for the Jenkins job to run on its own at its

normal schedule or trigger the job themselves. One option is to use the Jenkins web

interface to run the pipeline or via the Jenkins Remote Access API14 as shown in the

example command below.

curl -X POST
https://Username:PasswordOrAPIKey@jenkins.host:jenkinsPort/job/JobName
/job/master/build

Once the Jenkins job has been triggered manually or via an automated schedule, the

output below shows the updated job output where the updated code in the Bitbucket

hosted Jenkinsfile ran. The Jenkins job was able to successfully add the attacker’s

SSH key to the Jenkins server.

14 https://www.jenkins.io/doc/book/using/remote-access-api/

X-Force Red | 3/2/2022 13

Viewing Jenkins build information

At this point, an attacker can now SSH to the Jenkins server using the SSH key under

their control, as shown below. This allows the attacker to access the Jenkins server as

the Jenkins user account, which gives the attacker the ability to perform various

actions, such as extracting all passwords saved within the Jenkins server.

X-Force Red | 3/2/2022 14

Successfully authenticating to Jenkins server via SSH

This example has shown one method where an attacker could pivot from an SCM

platform to a CI/CD platform such as Jenkins.

SCM Platform to Distribution Platform

Another scenario where an attacker could laterally move from an SCM platform is to

target the distribution platform. In this example, we will look at a scenario of

performing lateral movement from the GitLab Enterprise SCM system to the Artifactory

packaging system.

An attacker will need to identify any repositories that contain GitLab Runners15 they can

access using a compromised account. A GitLab Runner is an application that runs jobs

in a GitLab CI/CD pipeline. From an attacker perspective, these runners can be thought

of as agents that can run on servers to execute system commands. Being able to control

the CI/CD agent would allow potential compromise of the server that the agent runs on

or any assets it interacts with. In the web interface, you can view whether a GitLab

Runner is in use via the “CI/CD Settings” in a repository as shown below.

15 https://docs.gitlab.com/runner/

X-Force Red | 3/2/2022 15

Listing repository with GitLab Runner configured

This can also be identified via the GitLab Runners API16. An example command is shown

below to get a listing of all runners that are available to the user being authenticated

as.

curl --header "PRIVATE-TOKEN: apiToken"
https://gitlabHost/api/v4/runners

16 https://docs.gitlab.com/ee/api/runners.html

X-Force Red | 3/2/2022 16

Getting list of runners our user can access

Once an attacker has a listing of the runners available, they need to determine which

repository the runners are being used on. This can be performed using the below

example request by passing the runner ID at the end of the request.

curl --header "PRIVATE-TOKEN: apiToken"
https://gitlabHost/api/v4/runners/RunnerIDNumber | python -m json.tool
| grep -i http_url_to_repo

Getting repos associated with GitLab runners

Now that an attacker has identified they have access to a runner within a repository,

they can modify the CI configuration file17. This by default is named “.gitlab-ci.yml”. In

the below example, the CI configuration file is modified to print the Artifactory

username and password to the console that was being used as a part of this CI/CD

pipeline.

17 https://docs.gitlab.com/ee/ci/yaml/

X-Force Red | 3/2/2022 17

Modifying CI configuration file

After a CI configuration file is modified, it immediately triggers the pipeline to run with

the new instructions that are given. When viewing the job that ran via the pipeline, you

can see the Artifactory credentials have been displayed on the console.

X-Force Red | 3/2/2022 18

Showing job output

Next, those credentials are used to access the Artifactory system.

X-Force Red | 3/2/2022 19

Proving access to Artifactory

This successfully shows one method where an attacker could pivot from an SCM system

to a distribution platform such as Artifactory.

X-Force Red | 3/2/2022 20

GitHub Enterprise

GitHub Enterprise is a popular SCM system used by organizations. In this section, there

will be an overview of common terminology, the access model and API capabilities of

GitHub Enterprise. Additionally, attack scenarios against GitHub Enterprise will be

shown, along with how these attacks can be detected in system logs.

BACKGROUND

Terminology

In GitHub Enterprise, a key use of terminology is the use of “enterprise” and

“organization”. The term “enterprise” refers to the entire GitHub Enterprise instance.

One to many organizations can be contained within an enterprise, and the enterprise

manages all organizations. A fully detailed list of common terminology used in GitHub

Enterprise can be found at this resource18.

Access Model

Access Levels

Users that have access to GitHub Enterprise are all members of the enterprise by

default. The two primary enterprise roles are “Enterprise owner” and Enterprise

member”. Enterprise owners can manage organizations in the enterprise,

administrators, enterprise settings and enforce policy across organizations. Enterprise

members are members of organizations that are owned by the enterprise and can

collaborate in their assigned organization. Enterprise members cannot access or

configure enterprise settings. Details on these enterprise roles can be found at this

resource19.

Within an organization, there are different roles as well. There are five main

organization roles listed below. A detailed listing of organizations actions for these

roles, along with a description of these roles can be found at this resource20.

• Organization Owners

• Organizations Members

• Security Managers

18 https://docs.github.com/en/enterprise-server@3.3/get-started/quickstart/github-glossary
19 https://docs.github.com/en/enterprise-server@3.3/admin/user-management/managing-users-in-your-
enterprise/roles-in-an-enterprise
20 https://docs.github.com/en/enterprise-server@3.3/organizations/managing-peoples-access-to-your-
organization-with-roles/roles-in-an-organization

X-Force Red | 3/2/2022 21

• GitHub App Managers

• Outside Collaborators

There are also different roles that can be assigned for repositories within an

organization. Five key repository roles are listed below. A detailed listing of repository

actions for these roles, along with a description of these roles can be found at this

resource21.

• Read

• Triage

• Write

• Maintain

• Admin

Access Token Scopes

When assigning an API access token, there are multiple options for permissions to

assign to that access token. In GitHub Enterprise, these are called “scopes”. These

scopes determine whether the access token has access to repositories, SSH keys,

users, and many other facets. A full and detailed listing of all available access token

scopes in GitHub Enterprise is listed at this resource22.

API Capabilities

The GitHub Enterprise REST API enables a user to perform several actions such as

interacting with repositories, access tokens, SSH keys and more. Administrative actions

can also be performed via the REST API. Full documentation on the REST API is

available at this resource23.

21 https://docs.github.com/en/enterprise-server@3.3/organizations/managing-access-to-your-organizations-
repositories/repository-roles-for-an-organization
22 https://docs.github.com/en/developers/apps/building-oauth-apps/scopes-for-oauth-apps#available-scopes
23 https://docs.github.com/en/enterprise-server@3.0/rest/guides/getting-started-with-the-rest-api

X-Force Red | 3/2/2022 22

ATTACK SCENARIOS

The below scenarios are notable for an attacker to attempt against GitHub Enterprise

and have been useful as a part of X-Force Red’s Adversary Simulation engagements.

This is not an exhaustive list of every single attack path available to execute on GitHub

Enterprise. The below table summarizes the attack scenarios that will be described.

Attack Scenario Sub-Scenario Admin Required?

Reconnaissance -Repository

-File

-Code

No

Repository Takeover N/A Yes

User Impersonation -Impersonate User Login

-Impersonation Token

Yes

Promoting User to Site Admin N/A Yes

Maintain Persistent Access -Personal Access Token

-Impersonation Token

-SSH Key

No

Yes

No

Management Console Access N/A Yes
Table of GitHub Enterprise Attack Scenarios

Reconnaissance

The first step an attacker will take once access has been gained to a GitHub Enterprise

instance is to start performing reconnaissance. Reconnaissance that could be of value

to an attacker includes searching for repositories, files, and code of interest.

Repository Reconnaissance

An attacker may be looking for repositories that deal with a particular application or

system. In this case, we are searching for “locat” to look for repositories with that

search term in the name.

X-Force Red | 3/2/2022 23

Searching for repositories via web interface

Another option available to an attacker to search for a repository is via the Search REST

API24 as shown with the below example curl command.

curl -i -s -k -X $'GET' -H $'Content-Type: application/json' -H
$'Authorization: Token apiKey'
$'https://gheHost/api/v3/search/repositories?q=searchTerm'

Search result for search repositories API

File Reconnaissance

24 https://docs.github.com/en/enterprise-server@3.3/rest/reference/search#search-repositories

X-Force Red | 3/2/2022 24

There may also be certain files of interest to an attacker based on file name. For

example, maybe a file with “decrypt” in the file name. In this example, we are searching

for Jenkins CI configuration files with the search term “jenkinsfile in:file”.

Searching for file via web interface

Another option available to an attacker to search for a file is via the Search REST API25

as shown with the below example curl command.

curl -i -s -k -X $'GET' -H $'Content-Type: application/json' -H
$'Authorization: Token apiToken'
$'https://gheHost/api/v3/search/commits?q=searchTerm'

Searching result for search commits API

Code Reconnaissance

A primary area of interest for an attacker is searching for secrets within code, such as

passwords or API keys. Code can be searched for a given search term via the web

interface as shown below.

25 https://docs.github.com/en/enterprise-server@3.3/rest/reference/search#search-commits

X-Force Red | 3/2/2022 25

Searching code via web interface

Searching for secrets within code can also be accomplished via the Search REST API26

as shown with the below example curl command.

curl -i -s -k -X $'GET' -H $'Content-Type: application/json' -H
$'Authorization: Token apiToken'
$'https://gheHost/api/v3/search/code?q=searchTerm'

Searching result for code search API

26 https://docs.github.com/en/enterprise-server@3.3/rest/reference/search#search-code

X-Force Red | 3/2/2022 26

Logging of Reconnaissance

Search requests for files, repositories and code within GitHub Enterprise are logged in

the haproxy log file (/var/log/haproxy.log) as shown below. These logs should be

forwarded to a Security Information and Event Management (SIEM) system, where they

can be ingested, and alerts built from them for anomalous activity.

cat /var/log/haproxy.log | grep -i '/search\|/api/v3/search' | cut -d
' ' -f6,7,20-22 | grep -i http

Viewing reconnaissance results in haproxy log

Repository Takeover

Using site admin access, an attacker can give themselves write access to any repository

within GitHub Enterprise. In the below example, we are attempting to view a repository

that our compromised site admin user (adumbledore) does not have access to.

Viewing locked repository

X-Force Red | 3/2/2022 27

Using site admin access, you can choose to unlock the repository via the “Unlock”

button shown below. This will unlock the repository for the user for two hours by

default.

Viewing screen to unlock repository

You must provide a reason to unlock the repository, and this reason is logged along with

the request.

Adding reason to unlocking repository

Now you can see we have successfully unlocked the repository, and it is unlocked for

two hours for the adumbledore user account.

X-Force Red | 3/2/2022 28

Showing repository has been unlocked

Then the repository can be accessed, and code can be modified within that repository

as shown below.

Accessing repository after unlock

There is an entry in the audit log for this, and it categorizes it as a “repo.staff_unlock”

action. This can be searched via the query “action:repo.staff_unlock”. This can also be

queried for in the audit logs on the GitHub Enterprise server in /var/log/github-

audit.log.

X-Force Red | 3/2/2022 29

Showing audit log entry for unlocking repository

User Impersonation

There are a couple options an attacker has if they have administrative access to GitHub

Enterprise and would like to impersonate another user. The first option is to

impersonate a user login via the web interface, and the second option is to create an

impersonation token.

Impersonate User Login

When viewing a user via the site admin console, there is an impersonation section at

the bottom. You will click the “Sign in to GitHub as @user” button.

X-Force Red | 3/2/2022 30

Viewing user information for hpotter

Next, you need to provide a reason why you are wanting to perform an impersonation

login as another user. The user who is being impersonated will receive an email

notification as stated.

X-Force Red | 3/2/2022 31

Beginning impersonation

You will then be logged in as the user you are impersonating. In this case, we used the

adumbledore user to impersonate the hpotter user.

Showing impersonation

There is an entry in the audit log for this impersonation activity, as it categorizes it as a

“staff.fake_login” action. This can be searched via the query “action:staff.fake_login”.

This can also be queried for in the audit logs on the GitHub Enterprise server in

/var/log/github-audit.log.

X-Force Red | 3/2/2022 32

Showing audit log entry for user impersonation

Impersonation Token

Another stealthier option for an attacker to impersonate a user is by creating an

impersonation token. This can be performed via the Enterprise Administration REST

API27 as shown with the below example curl command.

curl -i -s -k -X $'POST' -H $'Content-Type: application/json' -H
$'Authorization: Token apiToken' --data-binary
$'{\"scopes\":[\"repo\",\"admin:org\",\"admin:public_key\",\"admin:org

27 https://docs.github.com/en/enterprise-server@3.3/rest/reference/enterprise-admin#create-an-impersonation-
oauth-token

X-Force Red | 3/2/2022 33

_hook\",\"admin:gpg_key\",\"admin:enterprise\"]}'
$'https://gheHost/api/v3/admin/users/userToImpersonate/authorizations'

This will output the impersonation token to the console as shown below.

Creating user impersonation token

We can see the impersonation token listed via the site admin console. The user being

impersonated will not be able to see this impersonation token. Only site admins will be

able to see this impersonation token.

X-Force Red | 3/2/2022 34

Listing hpotter impersonation token

There is an entry in the audit log for this, as it categorizes it as a “oauth_access.create”

action followed by a subsequent “oauth_authorization.create” action. This can be

searched via the query “action:oauth_access.create OR

action:oauth_authorization.create”. This can also be queried for in the audit logs on the

GitHub Enterprise server in /var/log/github-audit.log.

X-Force Red | 3/2/2022 35

Showing audit log entry for impersonation token creation:

Promoting User to Site Admin

An attacker who has site admin credentials (username/password or API key) can

promote another regular user to the site admin role. One option to perform this is via

the GitHub Enterprise web interface. Press the “Add owner” button as shown below.

X-Force Red | 3/2/2022 36

Viewing administrators in Hogwarts organization

The user who was added as a site admin in this case is the hpotter user as shown

below.

Showing hpotter user added to site admins

Another option for an attacker to promote a user to site admin is via the Enterprise

Administration REST API28 as shown with the below example curl command. If

successful, you should receive an HTTP 204 status code.

curl -i -s -k -X $'PUT' -H $'Content-Type: application/json' -H
$'Authorization: Token apiToken'
$'https://gheHost/api/v3/users/userToPromote/site_admin'

There is an entry in the audit log for this, as it categorizes it as a

“action:business.add_admin” action followed by a subsequent “action:user.promote”

action. This can be searched via the query “action:user.promote OR

28 https://docs.github.com/en/enterprise-server@3.3/rest/reference/enterprise-admin#promote-a-user-to-be-a-
site-administrator

X-Force Red | 3/2/2022 37

action:business.add_admin”. You can see in the audit log that it clarifies whether the

action was performed via the API. This can also be queried for in the audit logs on the

GitHub Enterprise server in /var/log/github-audit.log.

Audit log entry for user promotion

Maintain Persistent Access

An attacker has a few primary options in terms of maintaining persistent access to

GitHub Enterprise. This can be performed either by creating a personal access token,

impersonation token, or adding a public SSH key.

Personal Access Token

The first option is creating a personal access token. This can only be performed via the

web interface and is not supported via the GitHub Enterprise REST API. This can be

performed by first going to a user’s “Developer Settings” menu and pressing the

“Generate new token” button.

X-Force Red | 3/2/2022 38

Viewing developer settings of user

The next page will allow you to specify the name of the token, expiration and scopes.

Access tokens with no expiration date should be questioned.

Creating personal access token

X-Force Red | 3/2/2022 39

After the token has been created, it will display the value one time to the user to be

copied. This will be the actual authentication token value used.

Viewing created personal access token value

We can now see our “persistence-token” listed in the user’s personal access token

settings.

Viewing all personal access tokens for hpotter user

There is an entry in the audit log for this, as it categorizes it as a “oauth_access.create”

action followed by a subsequent “oauth_authorization.create” action. This can be

searched via the query “action:oauth_access.create OR

action:oauth_authorization.create”. This can also be queried for in the audit logs on the

GitHub Enterprise server in /var/log/github-audit.log.

X-Force Red | 3/2/2022 40

Viewing audit log for personal access token creation

Impersonation Token

If an attacker has site admin privileges in GitHub Enterprise, they can create an

impersonation token for any user they would like. This is a much stealthier option in

terms of maintaining access to GitHub Enterprise. This process and details were

previously covered in the “User Impersonation” section.

SSH Key

X-Force Red | 3/2/2022 41

Another option that an attacker has for maintaining persistent access to GitHub

Enterprise is via an SSH key. You can view the available SSH keys and add SSH keys for

a user in their account settings.

Viewing SSH keys for hpotter

You will need to add a title and the value of the public SSH key as shown below.

Adding public ssh key for hpotter

X-Force Red | 3/2/2022 42

As you can see, our public SSH key has been created for the hpotter user account.

Viewing public SSH key added for hpotter

An attacker can also create a public SSH key via the Users REST API29 as shown with

the below example curl command. If successful, you should get an HTTP 201 status

code. When performing this request via a personal access token, it requires the

“write:public_key” permission in the scope of the personal access token. Additionally,

this SSH key cannot exist for any other user. Users cannot share the same public SSH

key.

curl -i -s -k -X $'POST' -H $'Content-Type: application/json' -H
$'Authorization: Token apiToken' --data-binary $'{"key":"pubSSHKey"}'
$'https://gheHost/api/v3/user/keys'

29 https://docs.github.com/en/enterprise-server@3.3/rest/reference/users#create-a-public-ssh-key-for-the-
authenticated-user

X-Force Red | 3/2/2022 43

Retrieving details of SSH key added via REST API

You can see the SSH key was added via the REST API for the hgranger user account as

shown below.

Viewing created public SSH key for hgranger

The private SSH key associated with the public SSH key added can now be used to clone

repositories within GitHub Enterprise.

X-Force Red | 3/2/2022 44

Cloning repository via SSH key

There is an entry in the audit log for this, as it categorizes it as a “public_key.create”

action followed by a subsequent “public_key.verify” action. This can be searched via

the query “action:public_key.create OR action:public_key.verify”. This can also be

queried for in the audit logs on the GitHub Enterprise server in /var/log/github-

audit.log.

Viewing audit log entries for public SSH keys created

X-Force Red | 3/2/2022 45

Management Console Access

In addition to the site admin console, there is also a management console within GitHub

Enterprise. This console can be accessed via a single, shared password, and can be

accessed via https://gheHost/setup. An example of the login page is shown below.

Management console

One aspect that could be of interest to an attacker is adding their SSH key, so that they

can SSH to the management console. This can be performed as shown below.

X-Force Red | 3/2/2022 46

Adding public SSH key

For SSH access to the management console, the default username is “admin” and

default SSH port is 122. Once an SSH key has been added to the management console,

you can SSH to it as shown below.

X-Force Red | 3/2/2022 47

Authenticating to management console via SSH

Using SSH access to the management console, you can view the GitHub Enterprise

config via the “ghe-config -l” command. An example command that can be used to list

credentials is shown below. In this example, the GitHub Enterprise instance is setup to

sync with Active Directory. Other credentials such as SMTP for example may be listed

in this configuration file. For a full listing of commands available in the management

console via SSH, see this resource30.

ghe-config -l | grep -i 'password\|ldap\|user'

30 https://docs.github.com/en/enterprise-server@3.0/admin/configuration/configuring-your-
enterprise/command-line-utilities

X-Force Red | 3/2/2022 48

Searching configuration file for credentials

The addition of the SSH key in the management console is not documented in the audit

log. However, it is logged in the below management log file (/var/log/enterprise-

manage/unicorn.log).

cat /var/log/enterprise-manage/unicorn.log | grep -i authorized-keys |
grep -i post

Searching for adding SSH keys via management console

Another file of interest via SSH access to the GitHub Enterprise server is the secrets

configuration file (/data/user/common/secrets.conf) as it will also contain multiple

different types of credentials including private SSH keys and API keys for example.

X-Force Red | 3/2/2022 49

GitLab Enterprise

GitLab Enterprise is another popular SCM system used by organizations. In this section,

there will be an overview of common terminology, the access model and API

capabilities of GitLab Enterprise. Additionally, attack scenarios against GitLab

Enterprise will be shown, along with how these attacks can be detected in system logs.

BACKGROUND

Terminology

One of the key terms that is used frequently within GitLab Enterprise is “projects”.

Projects can host code, track issues and can contain CI/CD pipelines. A full listing of

key terms related to GitLab Enterprise can be found at this resource31.

Access Model

Access Levels

There are five roles that are available for a user in terms of project permissions listed

below. A detailed table that includes every action that each project permission role

allows is available at this resource32.

• Guest

• Reporter

• Developer

• Maintainer

• Owner

For each of the five roles, there are several group member permissions available. A

detailed table that includes group member actions that each role allows is available at

this resource33. One thing to note is that by default, users can change their usernames

and can create groups.

31 https://docs.gitlab.com/ee/user/index.html
32 https://docs.gitlab.com/ee/user/permissions.html#project-members-permissions
33 https://docs.gitlab.com/ee/user/permissions.html#group-members-permissions

X-Force Red | 3/2/2022 50

Each role also has several CI/CD pipeline permissions34 available and CI/CD job

permissions35.

Access Token Scopes

There are a total of eight personal access token scopes that are available in GitLab

Enterprise. A listing of the different scopes and descriptions are below from this

resource36.

Scope Description

api Read-write for the complete API, including all groups and projects,

the Container Registry, and the Package Registry.

read_user Read-only for endpoints under /users. Essentially, access to any of

the GET requests in the Users API.

read_api Read-only for the complete API, including all groups and projects,

the Container Registry, and the Package Registry.

read_repository Read-only (pull) for the repository through git clone.

write_repository Read-write (pull, push) for the repository through git clone.

Required for accessing Git repositories over HTTP when 2FA is

enabled.

read_registry Read-only (pull) for Container Registry images if a project is private

and authorization is required.

write_registry Read-write (push) for Container Registry images if a project is

private and authorization is required. (Introduced in GitLab 12.10.)

sudo API actions as any user in the system (if the authenticated user is

an administrator).

Table of access token scopes

34 https://docs.gitlab.com/ee/user/permissions.html#gitlab-cicd-permissions
35 https://docs.gitlab.com/ee/user/permissions.html#job-permissions
36 https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html#personal-access-token-scopes

X-Force Red | 3/2/2022 51

API Capabilities

The GitLab REST API enables a user to perform several actions such as interacting with

projects, access tokens, SSH keys and more. This also allows administrative actions.

Full documentation on the REST API is available here37.

ATTACK SCENARIOS

The below scenarios are notable for an attacker to attempt against GitLab Enterprise

and have been useful as a part of X-Force Red’s Adversary Simulation engagements.

This is not an exhaustive list of every single attack path available to execute on GitLab

Enterprise. The below table summarizes the attack scenarios that will be described.

Attack Scenario Sub-Scenario Admin Required?

Reconnaissance -Repository

-File

-Code

No

User Impersonation -Impersonate User Login

-Impersonation Token

Yes

Promoting User to Admin Role N/A Yes

Maintain Persistent Access -Personal Access Token

-Impersonation Token

-SSH Key

No

Yes

No

Modifying CI/CD Pipeline N/A No

SSH Access N/A Yes
Table of GitLab Enterprise Attack Scenarios

Reconnaissance

The first step an attacker will take once access has been gained to a GitLab Enterprise

instance, is to start performing reconnaissance. Reconnaissance that could be of value

to an attacker includes searching for repositories, files, and code of interest.

Repository Reconnaissance

An attacker may be looking for repositories that deal with a particular application or

system. In this case, we are searching for “charm” to look for repositories with that

search term in the name.

37 https://docs.gitlab.com/ee/api/index.html

X-Force Red | 3/2/2022 52

Performing web interface project search in GitLab

Another option for an attacker to search for a project is via the Advanced Search REST

API38 as shown with the below example curl command.

curl -k --header "PRIVATE-TOKEN: apiKey"
"https://gitlabHost/api/v4/search?scope=projects&search=searchTerm"

38 https://docs.gitlab.com/ee/api/search.html#scope-projects

X-Force Red | 3/2/2022 53

Project search results via API

File Reconnaissance

There also may be certain files of interest to an attacker based on file name. For

example, maybe a file with “decrypt” in it. In GitLab Enterprise, you can use the

“Advanced Search” feature in the web interface if Elasticsearch is configured and

enabled. This is detailed at this resource39.

An alternative method for an attacker to search for a file is via the Repository Tree REST

API40 as shown with the below example curl command. This request needs to be

performed for each project, and then the output filtered for the file you are looking for.

curl -k --header "PRIVATE-TOKEN: apiToken"
"https://gitlabHost/api/v4/projects/projectID/repository/tree" |
python -m json.tool | grep -i searchTerm

39 https://docs.gitlab.com/ee/user/search/advanced_search.html
40 https://docs.gitlab.com/ee/api/repositories.html#list-repository-tree

X-Force Red | 3/2/2022 54

Search results for filtering for files of interest

Code Reconnaissance

An important area of interest for an attacker is searching for secrets within code, such

as passwords or API keys. In GitLab Enterprise, you can use the “Advanced Search”

feature in the web interface if Elasticsearch is configured and enabled.

A different method for an attacker to search code is via the Project Search REST API41

as shown with the below example curl command. This request needs to be performed

for each project.

curl -k --request GET --header "PRIVATE-TOKEN: apiKey"
"https://gitlabHost/api/v4/projects/projectID/search?scope=blobs&searc
h=searchTerm" | python -m json.tool

Results of searching for search term in code

Logging of Reconnaissance

The project searches via the web interface are logged in the Production log

(/var/log/gitlab/gitlab-rails/production.log) as shown below. One issue with

this is that it doesn’t have details on the search term that was used. As you can see in

the below screenshot it says “[FILTERED]”.

cat /var/log/gitlab/gitlab-rails/production.log | grep -A3 -i GET |
grep -i '/search?search'

cat /var/log/gitlab/gitlab-rails/production_json.log | grep -i get |
grep -i '/search"'

41 https://docs.gitlab.com/ee/api/search.html#scope-blobs-premium-2

X-Force Red | 3/2/2022 55

Viewing production logs for search information

The project, file and code searches via the REST API previously shown are logged via

the API log (/var/log/gitlab/gitlab-rails/api_json.log) as shown below.

However, the actual search query is not shown and is instead shown as “[FILTERED]”.

cat /var/log/gitlab/gitlab-rails/api_json.log | grep -i get | grep -i
'/search"\|repository/tree'

Viewing API log for searches

An alternative log file to get the search terms being used is the web log

(/var/log/gitlab/nginx/gitlab_access.log) as shown below. This allows

defenders to see what is being searched for and build rules for anomalous activity or

suspicious searches such as “password”.

cat /var/log/gitlab/nginx/gitlab_access.log | grep -i '/search' | cut
-d " " -f1,4,7 | grep -i api

X-Force Red | 3/2/2022 56

Filtering web log for search requests

Ensure all the logs mentioned are being forwarded from the GitLab Enterprise server to

a SIEM, where they can be ingested, and alerts built from them for anomalous activity.

User Impersonation

There are two options an attacker has if they have administrative access to GitLab

Enterprise and would like to impersonate another user. The first option is to

impersonate a user login via the web interface, and the second option is to create an

impersonation token.

Impersonate User Login

When viewing a user via the admin area, there is a button available in the top right-hand

corner labeled “Impersonate”.

Impersonate user button in hpotter profile

After clicking the “Impersonate” button, you will be logged in as the user you are

wanting to impersonate. In this instance, we are impersonating the hpotter user

account.

X-Force Red | 3/2/2022 57

Showing impersonation of hpotter

This impersonation action is logged as shown in the audit events documentation 42. The

below search query can be performed on the GitLab server to find impersonation logon

events.

cat /var/log/gitlab/gitlab-rails/application*.log | grep -i 'has
started impersonating'

Showing user impersonation in application log

Impersonation Token

An attacker with admin access can also impersonate another user by creating an

impersonation token. This can be performed via the web interface or the Users REST

API43. Using the web interface as an admin, you can navigate to the “Impersonation

Tokens” section for the user account that you would like to impersonate. Add the

details for your token including name, expiration date, and scope of permissions.

42 https://docs.gitlab.com/ee/administration/audit_events.html#impersonation-data
43 https://docs.gitlab.com/ee/api/users.html#create-an-impersonation-token

X-Force Red | 3/2/2022 58

Creating impersonation token

After you have created your impersonation token, the token value will be listed for use.

The user that is impersonated cannot see this impersonation token when accessing

GitLab Enterprise as themselves; it is only visible to other admin users.

Showing created impersonation token

X-Force Red | 3/2/2022 59

This activity is logged in the production log (/var/log/gitlab/gitlab-

rails/production_json.log) as shown below.

cat /var/log/gitlab/gitlab-rails/production_json.log | grep -i
impersonate

cat /var/log/gitlab/gitlab-rails/production.log | grep -A3 -i post |
grep -A3 -i impersonation_tokens

Viewing impersonation token creation via web interface in logs

An attacker can also create an impersonation token via the Users REST API as shown

with the below example curl command.

curl -k --request POST --header "PRIVATE-TOKEN: apiToken" --data
"name=someName-impersonate" --data "expires_at=" --data "scopes[]=api"
--data "scopes[]=read_user" --data "scopes[]=read_repository" --data
"scopes[]=write_repository" --data "scopes[]=sudo"
"https://gitlabHost/api/v4/users/userIDNumberToImpersonate/impersonati
on_tokens"

Output after creating impersonation token via API

X-Force Red | 3/2/2022 60

This activity is logged in the API log (/var/gitlab/gitlab-rails/api_json.log) as

shown below.

cat /var/log/gitlab/gitlab-rails/api_json.log | grep -i
impersonation_tokens

Viewing impersonation token creation via API in logs

Promoting User to Admin Role

An attacker who has admin credentials (username/password or API key) can promote

another regular user to the admin role. One option to perform this is via the GitLab

Enterprise web interface by checking the “Admin” radio button shown below.

X-Force Red | 3/2/2022 61

Giving user admin level access

You can now see the hgranger user has the admin role.

X-Force Red | 3/2/2022 62

Showing hgranger user has admin access

This activity is logged in the production log (/var/log/gitlab/gitlab-

rails/production_json.log) as shown below.

cat /var/log/gitlab/gitlab-rails/production_json.log | grep -i patch |
grep -i 'admin/users'

cat /var/log/gitlab/gitlab-rails/production.log | grep -A3 -i 'patch'
| grep -A3 -i 'admin/users'

Showing logging for adding user to admin via web interface

An attacker can also promote a user to admin via the Users REST API44 as shown with

the below example curl command.

44 https://docs.gitlab.com/ee/api/users.html#user-modification

X-Force Red | 3/2/2022 63

curl -k --request PUT --header "PRIVATE-TOKEN: apiToken" -H $'Content-
Type: application/json' --data-binary '{"admin":"true"}'
"https://gitlabHost/api/v4/users/UserIDNumberToPromote"

Adding user to admin via API

This activity is logged in the API log (/var/log/gitlab/gitlab-rails/api_json.log)

as shown below.

cat /var/log/gitlab/gitlab-rails/api_json.log | grep -i PUT | grep -i
'"key":"admin","value":"true"'

Snippet of API log showing user added to admin role

Maintain Persistent Access

An attacker has three primary options in terms of maintaining persistent access to

GitLab Enterprise. This can be performed either by creating a personal access token,

impersonation token, or adding a public SSH key.

Personal Access Token

X-Force Red | 3/2/2022 64

The first option is creating a personal access token. This can be performed via the web

interface as a regular user or can be performed via the Users REST API45 as an

administrator. The below screenshot shows creating a personal access token called

“persistence-token”.

Creating personal access token for hpotter user

You can see the created personal access token and the token value below.

45 https://docs.gitlab.com/ee/api/users.html#create-a-personal-access-token

X-Force Red | 3/2/2022 65

Showing token value created

This activity is logged in the production log (/var/log/gitlab/gitlab-

rails/production.log) as shown below.

cat /var/log/gitlab/gitlab-rails/production.log | grep -A3 -i post |
grep -A3 -i personal_access_tokens

cat /var/log/gitlab/gitlab-rails/production_json.log | grep -i post |
grep -i personal_access_tokens

Viewing production log with access token creation activity

An attacker can also create a personal access token via the Users REST API as shown

with the below example curl command. This requires admin permissions.

curl -k --request POST --header "PRIVATE-TOKEN: apiToken" --data
"name=hgranger-persistence-token" --data "expires_at=" --data
"scopes[]=api" --data "scopes[]=read_repository" --data
"scopes[]=write_repository"
"https://gitlabHost/api/v4/users/UserIDNumber/personal_access_tokens"

X-Force Red | 3/2/2022 66

Creating access token via API

This activity is logged in the API log (/var/log/gitlab/gitlab-rails/api_json.log)

as shown below.

cat /var/log/gitlab/gitlab-rails/api_json.log | grep -i post | grep -i
personal_access_tokens

Viewing API log with access token creation

Impersonation Token

If an attacker has admin privileges in GitLab Enterprise, they can create an

impersonation token for any user they would like. This is a much stealthier option in

terms of maintaining access to GitLab Enterprise. This process and details were

previously covered in the “User Impersonation” section.

SSH Key

Another option that an attacker has for maintaining persistent access to GitLab

Enterprise is via an SSH key as shown in the screenshot below.

X-Force Red | 3/2/2022 67

Adding SSH key via web interface

This activity is logged in the production log (/var/log/gitlab/gitlab-

rails/production.log) as shown below.

cat /var/log/gitlab/gitlab-rails/production.log | grep -A3 -i post |
grep -A3 -i 'profile/keys'

cat /var/log/gitlab/gitlab-rails/production_json.log | grep -i post |
grep -i 'profile/keys'

Viewing log with evidence of adding SSH key for hgranger

X-Force Red | 3/2/2022 68

Another method to add an SSH key is via the Users REST API46 as shown with the below

example curl command. When performing this request via a personal access token, it

requires the “api” permission in the scope of the personal access token. Additionally,

this SSH key cannot exist for any other user. Users cannot share the same public SSH

key.

curl -k --request POST -H $'Content-Type: application/json' --header
"PRIVATE-TOKEN: apiToken" --data-binary '{"title":"persistence-
key","key":"pubSSHKey"}' "https://gitlabHost/api/v4/user/keys"

Adding SSH key via API request

The private SSH key associated with the public SSH key added can now be used to clone

repositories within GitLab Enterprise.

Cloning repository via added SSH key

This activity is logged in the API log (/var/log/gitlab/gitlab-rails/api_json.log)

as shown below.

cat /var/log/gitlab/gitlab-rails/api_json.log | grep -i post | grep -i
'user/keys'

46 https://docs.gitlab.com/ee/api/users.html#add-ssh-key

X-Force Red | 3/2/2022 69

Viewing SSH key addition via API log

Modifying CI/CD Pipeline

As shown in the “” section, GitLab Runners can be abused to facilitate lateral movement

throughout an environment. A GitLab Runner will run the instructions defined in the CI

configuration file for a project. The example of modifying the GitLab CI configuration

file is shown below. This can also be done outside of the web interface via the Git

command-line tool. When modifying the CI configuration file, you will need either the

Developer, Maintainer or Owner role for a project.

Modifying GitLab CI configuration file

X-Force Red | 3/2/2022 70

When modifying the GitLab CI configuration file through the web interface, it is logged

in the Production log (/var/log/gitlab/gitlab-rails/production_json.log) as

shown below.

cat /var/log/gitlab/gitlab-rails/production_json.log | grep -i post |
grep -i '/api/graphql' | grep -i '.gitlab-ci.yml' | grep -i update

Filtering production log for CI file update

Any commits that update the CI configuration file in a project should be heavily

scrutinized and require approval before pushed.

SSH Access

If an attacker obtains SSH access to a GitLab Enterprise server, there are a few items

of interest. The first item is the GitLab configuration file (/etc/gitlab/gitlab.rb), as

it can contain multiple different types of credentials. For example, if GitLab Enterprise

is integrated with Active Directory, it may have LDAP credentials in the configuration

file, as shown below.

X-Force Red | 3/2/2022 71

 Reading GitLab configuration file searching for AD creds

Another type of credential that may be contained in the configuration file is AWS keys.

This is just one example of a type of credential that could be contained in this

configuration file.

X-Force Red | 3/2/2022 72

Reading GitLab configuration file searching for AWS keys

The GitLab secrets json file (/etc/gitlab/gitlab-secrets.json) also may contain

credentials of interest to an attacker.

Reading GitLab secrets file

By default, GitLab Enterprise uses a Postgresql database to store information. This can

be connected to locally as shown below.

X-Force Red | 3/2/2022 73

Accessing Postgresql database

One type of information that can be obtained from this database is user information, as

shown below.

Listing user information in Postgresql database

X-Force Red | 3/2/2022 74

Bitbucket

Bitbucket is the last SCM system that will be detailed in this whitepaper. In this section,

there will be an overview of common terminology, the access model and API

capabilities of Bitbucket. Additionally, attack scenarios against Bitbucket will be

shown, along with how these attacks can be detected in system logs. In this case,

Bitbucket Server47 will be specifically detailed.

BACKGROUND

Terminology

A list of key terms related to Bitbucket can be found here48. One thing to note about

Bitbucket is that a project is meant to be a container for one-to-many repositories.

Access Model

Access Levels

There are four levels of permissions in Bitbucket, which include global, project,

repository, and branch permissions. A table listing an explanation of the permissions is

shown below from the Bitbucket documentation49. One thing to note is that all

permissions can either be set at the user or group level. Before a user can login to

Bitbucket, they must at least have been added permissions in the global access

permissions.

Permission Name Description

Global Who can login to Bitbucket, who is system admin, admin, etc.

Project Read, write, and admin permissions at the project (groups of

repositories) level.

Repository Read, write, and admin permissions on a per repository basis.

Branch Write (push) access on a per branch basis.

47 https://www.atlassian.com/software/bitbucket/enterprise
48 https://bitbucket.org/product/guides/getting-started/overview#key-terms-to-know
49 https://confluence.atlassian.com/bitbucketserverkb/4-levels-of-bitbucket-server-permissions-779171636.html

X-Force Red | 3/2/2022 75

Table of Bitbucket permission types

The below table explains the different roles that can be assigned via the global

permissions.

Bitbucket global access permissions50

The below table explains the different roles that can be assigned via the project

permissions.

Bitbucket project permissions51

50 https://confluence.atlassian.com/bitbucketserver/global-permissions-776640369.html
51 https://confluence.atlassian.com/bitbucketserver/using-project-permissions-776639801.html

X-Force Red | 3/2/2022 76

The below table explains the different roles that can be assigned via the repository

permissions.

Bitbucket repository permissions52

The below table explains the branch permissions that can be assigned53.

Name Description

Prevent all

changes

Prevents pushes to the specified branch(es) and restricts creating

new branches that match the branch(es) or pattern.

Prevent deletion Prevents branch and tag deletion.

Prevent

rewriting history

Prevents history rewrites on the specified branch(es) - for example

by a force push or rebase.

Prevent changes

without a pull

request

Prevents pushing changes directly to the specified branch(es);

changes are allowed only with a pull request.

Bitbucket branch permissions

Access Token Scopes

Access tokens in Bitbucket are restricted to just use with projects and repositories. This

is a different model than some other SCM systems like GitHub Enterprise and GitLab

52 https://confluence.atlassian.com/bitbucketserver/using-repository-permissions-776639771.html
53 https://confluence.atlassian.com/bitbucketserver/using-branch-permissions-776639807.html

X-Force Red | 3/2/2022 77

Enterprise. The below table explains the different scopes that can be assigned to an

access token.

Bitbucket API scopes54

API Capabilities

The Bitbucket REST API enables a user to perform several actions such as interacting

with projects, repositories, access tokens, SSH keys and more. Full documentation on

the REST API is available at this resource55.

54 https://confluence.atlassian.com/bitbucketserver/http-access-tokens-939515499.html
55 https://developer.atlassian.com/server/bitbucket/reference/rest-api/

X-Force Red | 3/2/2022 78

ATTACK SCENARIOS

The below scenarios are notable for an attacker to attempt against Bitbucket and have

been useful as a part of X-Force Red’s Adversary Simulation engagements. This is not

an exhaustive list of every single attack path available to execute on Bitbucket. The

below table summarizes the attack scenarios that will be described.

Attack Scenario Sub-Scenario Admin Required?

Reconnaissance -Repository

-File

-Code

No

Promoting User to Admin Role N/A Yes

Maintain Persistent Access -Personal Access Token

-SSH Key

No

Modifying CI/CD Pipeline N/A No – Write Access to

Repo
Table of Bitbucket Attack Scenarios

Reconnaissance

The first step an attacker will take once access has been gained to a Bitbucket instance,

is to start performing reconnaissance. Reconnaissance that could be of value to an

attacker includes searching for repositories, files, and code of interest.

Repository Reconnaissance

An attacker may be looking for repositories that deal with a particular application or

system. In this case, we are searching for “cred” to look for repositories with that

search term in the name.

Searching for repository via web interface

X-Force Red | 3/2/2022 79

Project searches can be accomplished also via the Repos REST API56 as shown with the

below example curl command.

curl -i -s -k -X $'GET' -H $'Content-Type: application/json' -H
$'Authorization: Bearer accessToken'
$'https://bitbucketHost/rest/api/1.0/repos?name=searchTerm'

File Reconnaissance

There also may be certain files of interest to an attacker based on file name. For

example, maybe a file with “decrypt” in it. In this example, we are searching for any

files with “jenkinsfile” in the name.

Searching for file via web interface

Another option for an attacker to search for a file is via the Search REST API as shown

with the below example curl command.

curl -i -s -k -X $'POST' -H $'Content-Type: application/json' -H
$'Authorization: Bearer accessToken' --data-binary
$'{\"query\":\"searchTerm\",\"entities\":{\"code\":{}},\"limits\":{\"p
rimary\":100,\"secondary\":100}}'
$'https://bitbucketHost/rest/search/latest/search'

Code Reconnaissance

Another area of interest for an attacker is searching for secrets within code, such as

passwords or API keys. In this example, we are searching for “API_KEY”.

56 https://docs.atlassian.com/bitbucket-server/rest/7.20.0/bitbucket-rest.html#idp450

X-Force Red | 3/2/2022 80

Searching for code via web interface

An attacker can also search for a project via the Search REST API as shown with the

below example curl command.

curl -i -s -k -X $'POST' -H $'Content-Type: application/json' -H
$'Authorization: Bearer apiToken' --data-binary
$'{\"query\":\"searchTerm\",\"entities\":{\"code\":{}},\"limits\":{\"p
rimary\":100,\"secondary\":100}}'
$'https://bitbucketHost/rest/search/latest/search'

Logging of Reconnaissance

In order to log the search query that is being performed, the logging level needs to be

increased as shown in the below screenshot by enabling debug logging. This will add

significantly more logging and usage of disk space on the Bitbucket server, so this

logging change will depend on the organization. This is in the system administration

menu within “Logging and Profiling”.

X-Force Red | 3/2/2022 81

Increasing logging level to cover search terms being used

You will see that the detailed search request is now in the Bitbucket log

(/var/log/atlassian/application-data/bitbucket/log/atlassian-

bitbucket.log)

cat /var/atlassian/application-data/bitbucket/log/atlassian-
bitbucket.log | grep -i post | grep -i search | grep -i query

Viewing logging of search criteria

X-Force Red | 3/2/2022 82

Promoting User to Admin Role

An attacker who has admin credentials (username/password) can promote another

regular user to the admin role. One option to perform this is via the Bitbucket web

interface by checking the “Admin” checkbox next to the respective user.

Adding admin role to user via web interface

This is logged via the access log (/var/atlassian/application-

data/bitbucket/log/atlassian-bitbucket-access.log) as shown below.

cat /var/atlassian/application-data/bitbucket/log/atlassian-bitbucket-
access.log | grep -i put | grep -i "/admin/permissions/users"

Viewing role change in access log

An attacker can also add a user to the admin role via the Admin User Permissions REST

API57 as shown with the below example curl command. In this instance we are using

the adumbledore account to add the hpotter account to the admin role.

curl -i -s -k -X $'PUT' -H $'Content-Type: application/json' -b
$'BITBUCKETSESSIONID= SessionID'
$'https://bitbucketHost/rest/api/1.0/admin/permissions/users?name=user
ToAdd&permission=ADMIN'

57 https://docs.atlassian.com/bitbucket-server/rest/4.5.1/bitbucket-rest.html#idp3716336

X-Force Red | 3/2/2022 83

Adding user to admin role via API

This is logged in the audit log (/var/atlassian/application-

data/bitbucket/log/audit/*.log) as shown below.

cat /var/atlassian/application-data/bitbucket/log/audit/*.log | grep -
i 'new.permission' | grep -i admin

Finding user addition via API in audit log

Additionally, the audit log can be viewed in the Bitbucket web interface to see these

events by filtering on “Global permission changed” where the “ADMIN” permission was

added as shown below.

X-Force Red | 3/2/2022 84

Viewing audit log in web interface for global permission changes

Maintain Persistent Access

There are two primary options an attacker can use to maintain persistent access to a

Bitbucket instance, which includes creating a personal access token or creating an SSH

key. There is no concept of impersonation tokens within Bitbucket like there is in GitHub

Enterprise and GitLab Enterprise.

Personal Access Token

Personal access tokens (HTTP access tokens) in Bitbucket are only scoped to interact

with projects and repositories and are not scoped to perform other actions such as

interacting with users or administrative functionality. To create a personal access token

via the web interface, navigate to the user account and select “HTTP access tokens” as

shown below.

X-Force Red | 3/2/2022 85

Access token menu

You can then specify the access token name, permissions, and expiration date.

Creating access token via web interface

This is logged via the access log (/var/atlassian/application-

data/bitbucket/log/atlassian-bitbucket-access.log) as shown below.

cat /var/atlassian/application-data/bitbucket/log/atlassian-bitbucket-
access.log | grep -i put | grep -i '/rest/access-tokens'

X-Force Red | 3/2/2022 86

Viewing access token creation in web interface via access log

This can also be performed via the Access Tokens REST API58 as shown in the below

curl command.

curl -i -s -k -X $'PUT' -H $'Content-Type: application/json' -b
$'BITBUCKETSESSIONID=sessionID' --data-binary $'{\"name\":
\"tokenName\",\"permissions\":
[\"REPO_ADMIN\",\"PROJECT_ADMIN\"],\"expiryDays\": \"\"}'
$'https://bitbucketHost/rest/access-
tokens/1.0/users/userToCreateAccessTokenFor

This is logged via the audit log (/var/atlassian/application-

data/bitbucket/log/audit/*.log) as shown below.

cat /var/atlassian/application-data/bitbucket/log/audit/*.log | grep -
i "personal access token created"

Filtering audit log for personal access token created

Additionally, the audit log can be viewed in the Bitbucket web interface to see these

events by filtering on “Personal access token created” as shown below.

58 https://docs.atlassian.com/bitbucket-server/rest/7.20.0/bitbucket-access-tokens-rest.html

X-Force Red | 3/2/2022 87

Viewing advanced audit log for access token creation

SSH Key

An attacker can also maintain access to Bitbucket by adding an SSH key. You can’t add

an SSH key that already exists for another user. This can be performed via the web

interface by navigating to a user profile and selecting “SSH keys” → “Add key”.

Adding SSH key via web interface

Below you can see the SSH key that was added.

X-Force Red | 3/2/2022 88

Viewing added SSH key

You can then use that SSH key to clone repositories as that user.

Cloning repository via added SSH key

This is logged via the access log (/var/atlassian/application-

data/bitbucket/log/atlassian-bitbucket-access.log) as shown below.

cat /var/atlassian/application-data/bitbucket/log/atlassian-bitbucket-
access.log | grep -i post | grep -i 'ssh/account/keys/add'

Viewing access log for SSH key added

X-Force Red | 3/2/2022 89

An alternative method to add an SSH key is via the SSH REST API 59 as shown with the

below example curl command.

curl -i -s -k -X $'POST' -H $'Content-Type: application/json' -b
$'BITBUCKETSESSIONID=sessionID' --data-binary $'{"text":"yourSSHKey"}'
$'https://bitbucketHost/rest/ssh/1.0/keys?user=UserToCreateSSHKeyFor'

This is logged via the audit log (/var/atlassian/application-

data/bitbucket/log/audit/*.log) as shown below.

cat /var/atlassian/application-data/bitbucket/log/audit/*.log | grep -
i "user added ssh access key"

Viewing audit log for SSH key added

Additionally, the audit log can be viewed in the Bitbucket web interface to see these

events by filtering on “User added SSH access key to profile” as shown below.

59 https://docs.atlassian.com/bitbucket-server/rest/7.20.0/bitbucket-ssh-rest.html

X-Force Red | 3/2/2022 90

Viewing advanced audit log for adding SSH key

Modifying CI/CD Pipeline

In Bitbucket, there is a feature called Bamboo60 that can be installed and configured to

facilitate a CI/CD pipeline. If a repository is using a CI/CD pipeline with Bamboo, it will

contain a directory named “bamboo-specs” within the root of the repository, along with

a Bamboo configuration file. This configuration file will either be a YAML 61 file

(bamboo.yaml) or a Java62 spec file (pom.xml). If an attacker would like to discover any

repositories that are configured with a CI/CD pipeline via Bamboo, they can search for

“bamboo-specs” in either the web interface or REST API.

60 https://www.atlassian.com/software/bamboo
61 https://docs.atlassian.com/bamboo-specs-docs/8.1.2/specs.html?yaml#
62 https://docs.atlassian.com/bamboo-specs-docs/8.1.2/specs.html?java#

X-Force Red | 3/2/2022 91

Discovering repos with CI/CD integration via Bamboo

As long as you have write access or admin access to a repository, the Bamboo

configuration file can be modified. In this case, we are modifying the bamboo.yaml file

to add our SSH key to the server where the Bamboo agent is running. This can be

performed via the Git command line tool as well to commit the changes to the Bamboo

configuration file.

Modifying Bamboo yaml file

X-Force Red | 3/2/2022 92

This will immediately trigger the CI/CD pipeline to run as shown below.

Showing successful job status

When viewing the output from the pipeline, we can see our SSH key was added, and it

printed the hostname of the server where the SSH key was added.

Viewing pipeline logs

Below shows successfully accessing the server where the SSH key was added via the

modified CI/CD pipeline configuration file via SSH.

X-Force Red | 3/2/2022 93

Proving SSH access to Bitbucket server

When there is a change to a CI/CD pipeline, this is logged on the Bamboo server as

shown below.

sudo cat $BAMBOO_HOME/logs/atlassian-bamboo.log | grep -i "change
detection found"

Results of searching for changes in Bamboo YAML file

Any commits that update the Bamboo YAML file in a project should be heavily

scrutinized and require approval before pushed.

X-Force Red | 3/2/2022 94

SCMKit

BACKGROUND

At X-Force Red, we wanted to take advantage of the REST API functionality available in

the most common SCM systems seen during engagements and add the most useful

functionality in a proof-of-concept tool called SCMKit. The goal of this tool is to provide

awareness of the abuse of SCM systems, and to encourage the detection of attack

techniques against SCM systems.

SCMKit allows the user to specify the SCM system and attack module to use, along with

specifying valid credentials (username/password or API key) to the respective SCM

system. Currently, the SCM systems that SCMKit supports are GitHub Enterprise, GitLab

Enterprise and Bitbucket Server. The attack modules supported include

reconnaissance, privilege escalation and persistence. Other functionality available in

the non-public version of SCMKit were not included in consideration for defenders, such

as user impersonation and built-in credential searching. SCMKit was built in a modular

approach, so that new modules and SCM systems can be added in the future by the

information security community. The tool and full documentation are available on the

X-Force Red GitHub63. A few example use cases will be shown in the next sections.

RECONNAISSANCE

SCMKit has multiple modules available to perform reconnaissance of repositories, files,

code, and other resources specific to various SCM systems such as GitLab Runners for

example. The below example shows using the “codesearch” module in SCMKit. In this

scenario, we are searching for any code in Bitbucket Server that contains “API_KEY” to

try and discover API key secrets within source code.

63 https://github.com/xforcered

X-Force Red | 3/2/2022 95

Code search example for API key with SCMKit

File reconnaissance can also be performed with SCMKit. In this example, we are

searching for any files named “Jenkinsfile” to discover any Jenkins CI configuration

files within GitLab Enterprise.

X-Force Red | 3/2/2022 96

File search example with SCMKit

There are several other reconnaissance modules that apply only to certain SCM

systems. For example, there is a reconnaissance module to discover GitLab Runners

that you have access to via the “runnerlist” module.

GitLab Runner reconnaissance example with SCMKit

X-Force Red | 3/2/2022 97

PRIVILEGE ESCALATION

Another capability available in SCMKit is to add another user to the admin role. The

below example shows adding a regular user under our control (hgranger in this case)

to the site admin role in GitHub Enterprise via the “addadmin” module.

Adding site admin example via SCMKit

You can see the change that took effect in GitHub Enterprise after performing the site

admin addition via SCMKit, as the hgranger user is now a member of the site admins

group.

X-Force Red | 3/2/2022 98

Showing hgranger added as site admin

PERSISTENCE

There are two persistence modules within SCMKit that include the use of personal

access tokens or SSH keys. This can be useful to maintain access to an SCM system.

The below example shows creating an access token for the hgranger user account in

GitLab Enterprise via the “createpat” module.

X-Force Red | 3/2/2022 99

Creating access token example with SCMKit

We can list all active access tokens for a given user via the “listpat” module as shown

below.

Listing access tokens example with SCMKit

X-Force Red | 3/2/2022 100

Another persistence module available in SCMKit is the creation of SSH keys via the

“createsshkey” module. In this example, we are adding an SSH key for the hgranger

user in Bitbucket Server.

Creating SSH key example with SCMKit

We can list all active SSH keys for a given user via the “listsshkey” module as shown

below.

X-Force Red | 3/2/2022 101

Listing SSH keys example with SCMKit

X-Force Red | 3/2/2022 102

Defensive Considerations

SCMKIT

There are multiple static signatures that can be used to detect the usage of SCMKit.

These can be found in the Yara rule on the SCMKit repository.

A static user agent string is used when attempting each module in SCMKit. The user

agent string is “SCMKIT-5dc493ada400c79dd318abbe770dac7c”. A Snort rule is

provided on the SCMKit repository.

Additionally, any access tokens or SSH keys that are created in SCM systems using

SCMKit will be prepended with “SCMKit-” in the name as shown below. This can be

filtered in the respective SCM system to indicate an access token or SSH key was

created using SCMKit.

Viewing access token created by SCMKit

X-Force Red | 3/2/2022 103

GITHUB ENTERPRISE

Ensure that the below logs are being sent to your SIEM. This also lists the location of

the logs on the GitHub Enterprise server.

Log Name Location

Audit Log /var/log/github-audit.log*

Management Log /var/log/enterprise-manage/unicorn.log*

HAProxy Log /var/log/haproxy.log

Table of GitHub Enterprise logs of interest

Below are the various filters you can apply to the logs to detect the attacks

demonstrated in this whitepaper. Use these filters to build a baseline and detect

anomalous activity in your environment.

Attack Scenario Log Name Search Filter

Reconnaissance HAProxy Log (‘/search’ OR ‘/api/v3/search’) AND ‘http’

Repository Takeover Audit Log ‘action:repo.staff_unlock’

User Impersonation Audit Log ‘action:staff.fake_login’ OR

‘action:oauth_access.create’ OR

‘action:oauth_authorization.create’

Promoting User to

Site Admin

Audit Log ‘action:user.promote’ OR

‘action:business.add_admin’

Maintaining

Persistent Access

Audit Log ‘action:oauth_access.create’ OR

‘action:oauth_authorization.create’ OR

‘action:public_key.create’ OR

action:public_key.verify

Management

Console Access

Management

Log

‘authorized-keys’ AND ‘post’

X-Force Red | 3/2/2022 104

Table of search queries for various attack types

Additionally, the below items should be considered within GitHub Enterprise:

• Disable user impersonation

• Do not allow users to create personal access tokens or SSH keys with no

expiration date

• Set automatic expiration date on all personal access tokens and SSH keys

created/added

• Limit the number of site admins. At minimum there should be two site admins,

and should not be more unless necessary

• Operate on a policy of least privilege in terms of access to repositories

• Require signed commits via GPG keys or S/MIME certificates

• Enable MFA for accessing GitHub Enterprise

• Ensure that code branches are deleted in a timely manner

• Require at least one approver for each code commit

X-Force Red | 3/2/2022 105

GITLAB ENTERPRISE

Ensure that the below logs are being sent to your SIEM. This also lists the location of

the logs on the GitLab Enterprise server.

Log Name Location

Application Log /var/log/gitlab/gitlab-rails/application.log

/var/log/gitlab/gitlab-rails/application_json.log

Production Log /var/log/gitlab/gitlab-rails/production_json.log

/var/log/gitlab/gitlab-rails/production.log

API Log /var/log/gitlab/gitlab-rails/api_json.log

Web Log /var/log/gitlab/nginx/gitlab_access.log

Table of GitLab Enterprise logs of interest

Below are the various filters you can apply to the logs to detect the attacks

demonstrated in this whitepaper. Use these filters to build a baseline and detect

anomalous activity in your environment.

Attack Scenario Log Name Search Filter

Reconnaissance Production Log

API Log

Web Log

‘get’ AND ‘/search?search’

‘get’ AND ‘/search’

‘get’ AND (‘/search’ OR ‘repository/tree’)

‘search’

User Impersonation Application Log

'has started impersonating'

X-Force Red | 3/2/2022 106

Production Log

API Log

‘impersonate’

‘post’ AND ‘impersonation_tokens’

‘impersonation_tokens’

Promoting User to

Admin Role

Production Log

API Log

‘patch’ AND ‘admin/users’

‘put’ AND '"key":"admin","value":"true"'

Maintaining

Persistent Access

Production Log

API Log

‘post’ AND 'personal_access_tokens'

‘post’ AND 'profile/keys'

‘post’ AND ‘personal_access_tokens’

‘post’ AND 'user/keys'

Modifying CI/CD

Pipeline

Production Log ‘post’ AND '/api/graphql' AND '.gitlab-

ci.yml' AND ‘update’

Table of search queries for various attack types

Additionally, the below items should be considered within GitLab Enterprise

• Disable user impersonation

• Do not allow users to create personal access tokens or SSH keys with no

expiration date

• Set automatic expiration date on all personal access tokens and SSH keys

created/added

• Limit the number of users with the admin role. At minimum there should be two

admins, and should not be more unless necessary

• Operate on a policy of least privilege in terms of access to projects and

repositories

• Require signed commits via GPG keys or S/MIME certificates

• Enable MFA for accessing GitLab Enterprise

• Ensure that code branches are deleted in a timely manner

• Require at least one approver for each code commit

X-Force Red | 3/2/2022 107

BITBUCKET

Ensure that the below logs are being sent to your SIEM. This also lists the location of

the logs on the Bitbucket server. This research specifically looked at Bitbucket Server.

Log Name Location

Access Log /var/atlassian/application-
data/bitbucket/log/atlassian-bitbucket-access.log

Audit Log /var/atlassian/application-
data/bitbucket/log/audit/*.log

Bitbucket Log /var/atlassian/application-
data/bitbucket/log/atlassian-bitbucket.log

Bamboo Log $BAMBOO_HOME/logs/atlassian-bamboo.log

Table of Bitbucket logs of interest

Below are the various filters you can apply to the logs to detect the attacks

demonstrated in this whitepaper. Use these filters to build a baseline and detect

anomalous activity in your environment.

Attack Scenario Log Name Search Filter

Reconnaissance Bitbucket

Log

‘post’ AND ‘search’ AND ‘query’

Promoting User to Site

Admin

Access Log

Audit Log

‘put’ AND ‘/admin/permissions/users’

'new.permission' AND ‘admin’

Maintaining Persistent

Access

Access Log

‘put’ AND '/rest/access-tokens'

‘post’ AND 'ssh/account/keys/add'

X-Force Red | 3/2/2022 108

Audit Log ‘personal access token created’

‘user added ssh access key’

Modifying CI/CD Pipeline Bamboo

Log

‘change detection found’

Table of search queries for various attack types

Additionally, the below items should be considered within Bitbucket.

• Do not allow users to create personal access tokens or SSH keys with no

expiration date

• Set automatic expiration date on all personal access tokens and SSH keys

created/added

• Limit the number of system admins. At minimum there should be two system

admins, and should not be more unless necessary

• Operate on a policy of least privilege in terms of access to projects and

repositories

• Require signed commits via GPG keys or S/MIME certificates

• Enable MFA for accessing Bitbucket

• Ensure that code branches are deleted in a timely manner

• Require at least one approver for each code commit

• Increase logging level to detect reconnaissance

X-Force Red | 3/2/2022 109

Conclusion

Source code management systems contain some of the most sensitive information in

organizations and are a key component in the DevOps lifecycle. Depending on the role

of an organization, compromise of these systems can lead to the compromise of other

organizations. These systems are a high value to an attacker, and need more visibility

from the information security community, as they are currently an afterthought

compared to other systems such as Active Directory. It is X-Force Red’s goal that this

whitepaper and research will bring more attention and inspire future research on

defending these critical enterprise systems.

X-Force Red | 3/2/2022 110

Acknowledgments

A special thank you to the below people for giving feedback on this research and

providing whitepaper content review.

• Chris Thompson (@retBandit)

• Daniel Crowley (@dan_crowley)

• Dimitry Snezhkov (@Op_nomad)

• Patrick Fussell (@capt_red_beardz)

• Ruben Boonen (@FuzzySec)

X-Force Red | 3/2/2022 111

Appendix A: Table of SCM Attack Scenarios

The below table summarizes the attack scenarios shown in this whitepaper.

SCM System Attack Scenario Sub-Scenario

GitHub Enterprise Reconnaissance -Repository

-File

-Code

GitLab Enterprise Reconnaissance -Repository

-File

-Code

Bitbucket Reconnaissance -Repository

-File

-Code

GitHub Enterprise Maintain Persistent Access -Personal Access Token

-Impersonation Token

-SSH Key

GitLab Enterprise Maintain Persistent Access -Personal Access Token

-Impersonation Token

-SSH Key

Bitbucket Maintain Persistent Access -Personal Access Token

-SSH Key

GitHub Enterprise User Impersonation -Impersonate User Login

-Impersonation Token

GitLab Enterprise User Impersonation -Impersonate User Login

-Impersonation Token

GitHub Enterprise Promoting User to Site Admin N/A

GitLab Enterprise Promoting User to Admin Role N/A

Bitbucket Promoting User to Admin Role N/A

Bitbucket Modifying CI/CD Pipeline N/A

GitLab Enterprise Modifying CI/CD Pipeline N/A

GitHub Enterprise Repository Takeover N/A

GitHub Enterprise Management Console Access N/A

GitLab Enterprise SSH Access N/A
Table of SCM attack scenarios

